Recent Developments in Miniaturized Planar Harmonic Radar Antennas

Michael Hirsch, Gregory Charvat (presenting), Ben Crowgey, Leo Kempel, Edward Rothwell Michigan State University Electromagnetics Research Group East Lansing, MI

> Eugene Liening, Malcolm Warren Dow Chemical Co., Midland, MI

Motivation

- The Dow Chemical Co. (Midland, MI) sponsored research to develop a corrosion detecting radar system
- Goal: generate significant labor savings relative to manual inspections of insulated outdoor chemical tanks
 - The corrosion detecting "tag" would reside beneath insulation, against the metal chemical tank—need to have planar antenna with integral groundplane to avoid feedpoint impedance issues (following [8] and NEC2 simulations)

Typical chemical tank

Overview of radar system use

Background

- Reactive element corrodes proportionally to chemical tank
- Tag return loss proportional to corrosion—increased tag loss is detected by the harmonic radar system

"Good" element: normal tag return signal strength

Corroded element: significant decrease in tag return signal strength

"Bad" Corroded element

Background

- Harmonic Radar System:
 - Radar receives reflected energy at second harmonic (typically)
 - Allows discrimination between desired targets and highly reflective (e.g. metallic) background objects
 - Antenna "tag" typically uses a high-speed switching diode to generate harmonics from incident radar energy—only the second harmonic is received by the radar

Diode Selection

- The junction potential and zero-bias junction capacitance are two factors of interest for maximizing tag radar response (following [4,5])
- Experimental evidence indicates diode capacitance has a dominant effect on performance with this tag design

Note: 20MHz, not 917MHz simulation is shown

Diode Selection

- •We decided to pick a few diodes with low zero-bias junction capacitance and low junction potential, to experimentally find which diode/tag combination gave the largest tag return signal strength
- •We tried the following low-cost diodes:
 - •BAR42FILM
 - •BAS19LT1G
 - •SS14
 - •ES2B
 - •DAP202
- •Of these diodes, the DAP202 gave the best tag return signal strength with the new tag design. It costs 4.4 cents in quantities of 1000.

First Generation Tag

US Patent # 7,145,453 includes the first generation planar tag. Ultimately, it was determined that the tag cost needed to be reduced to manufacture in large quantities.

- Taconic RF-35 laminate—high cost
- Used two patch antennas—large physical size

Issues:

- •Performance: 50 ohm traces present high VSWR to diode, increasing loss and reducing range of detectibility
- •Material Cost: over \$7.00 plus need for shorting via
- •Size: 190x130mm=24700mm²

Developing a New Tag

Key ideas:

- •Use best economical FR-4 laminate
- •We felt that the diode interface was a good candidate for improvement
- •Simulations predicted the patch edge feedpoint to be ~220 ohms
- •But, 220 ohm traces are THIN, DIFFICULT, and EXPENSIVE

to make on this laminate

So, use a ¼ wavelength 220:50 ohm back to back with a 50:220 ohm transformer to present a 220 ohm impedance at both ends, through using a ¼ wavelength 105 ohm transformer trace

(105 ohm trace is 0.7mm on the new laminate—good) (220 ohm trace is < 0.1mm on the new laminate—bad)

Following [3,7]: $Z_o \Big|_{\frac{l}{\lambda} = 1/4} = \sqrt{Z_1 Z_2}$

and well-known microstrip width formulas (see paper)

Microstrip impedance transformer (220:50:220 ohms)

Prototype Measurements

Developed dual-patch prototype, simulated in Sonnet S11 Measured on HP8510 VNA (unused port was left unterminated)

S11 at input to transformer feeding F1 feedpoint (better than -15dB)

S11 at input to transformer feeding F2 feedpoint (better than -25dB)

Dual-feed proof of concept prototype

Developing a New Tag

Previous (first generation, patented) tag:

Developing a New Tag

New (second generation) tag, inspired by dual-band patch antenna in [1]:

Second (New) Generation Tag

Second (New) Generation Tag

Harmonic Radar Hardware

- Current system is CW, transmitting at 917MHz
 - Radar receives at second harmonic—1834MHz
 - Ten filters, superheterodyne receiver
 - TCXO slaved PLLs
 - Demodulator → log amp → front panel meter and BNC jack

Simplified System Block Diagram

Harmonic Radar Hardware

 At present, system runs off of 120VAC (e.g. using 12V car battery with AC inverter)

System in use at Dow Chemical - Midland, MI

Harmonic Radar Performance

What signal level to expect?

RX_signal[dBm] =
$$37 + 10 + 15 - 20 \log_{10} \frac{4\pi d}{\lambda} - 20 \log_{10} \frac{4\pi d}{\lambda} - 30 - 3$$

So, for 5 meters we may expect (following [6]):

$$37 + 10 + 15 - 20\log_{10} \frac{4\pi 5}{.3272} - 20\log_{10} \frac{4\pi 5}{.1636} - 30 - 3$$

$$= -68dBm$$

- -68dBm corresponds to an SNR of about 31dB with the present harmonic radar system
- But, diode loss is not fixed due in part to dynamic diode impedance

Harmonic Radar Hardware

RX noise floor is about -97dBm when TX is on

Tag Performance

Real-world testing outdoors at MSU and Dow Chemical
 Outdoor tag readings

Second (New) Generation Tag

- Goals: Achieved
 - Reduce material cost to under \$1.00 each (was over \$7)
 - Material cost for new tag is ~\$0.85
 - Reduce size
 - Surface area is 51% of 1st generation tag
 - Maintain performance and durability
 - Detectable at least as far as 1st generation tag

Future Work

- More detailed characterization of the diode/microstrip interface in order to more fully optimize this interface
- Study effects of corrosion—determine proportionality between corrosion and tag return signal strength

References

- [1] R. Bancroft, *Microstrip and Printed Antenna Design*, p. 124-127. Atlanta: Noble Publishing Co., 2004.
- [2] S. A. Maas. *The RF and Microwave Circuit Design Cookbook*, p. 138-140. Boston: Artech House, 1998.
- [3] K.C. Gupta, R. Garg, I. J. Bahl, *Microstrip Lines and Slotlines*, p. 72,88-94. Boston: Artech House, 1979.
- [4] G. Massobrio, P. Antogenetti. *Semiconductor Modeling With Spice*, p. 2-4,8-9,23-28. New York: McGraw-Hill,1993.
- [5] D. A. Neasmen. *Semiconductor Physics and Devices*, p. 323-330. Boston: Irwin, 1992.
- [6] P. F. Panter. Communication Systems Design, p. 101. New York: McGraw-Hill, 1972.
- [7] D. M. Pozar. *Microwave Engineering*, p. 15-16, 143-147. New York: John Wiley & Sons, 2005.
- [8] S. Ramo, J.R. Whinnery, T.V. Duzer, *Fields and Waves in Communication Electronics*. p. 602-605, 659-661. New York: Wiley, 1994.
- [9] Harmonic wireless transponder sensor and method, US patent 7,145,453, Patent and Trademark Office, 2006.